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Abstract This paper adds a computational approach to a previous theoretical result illus-
trating how the complexity of a simple dynamical system evolves under deformations. The
algorithm targets topological entropy in the 2-dimensional family P Q of compositions of
two logistic maps. Estimation of the topological entropy is made possible by the correspon-
dence between P Q and a subfamily of sawtooth maps P T , and is based on the well-known
fact that the kneading-data of a map determines its entropy. A complex search for kneading-
data in P T turns out to be computationally fast and reliable, delivering good entropy esti-
mates. Finally, the algorithm is used to produce a picture of the entropy level-sets in P Q,
as illustration to theoretical results such as Hu (Ph.D. thesis, CUNY, 1995) and Radulescu
(Discrete Cont. Dyn. Syst. 19(1):139–175, 2007).

Keywords Entropy · Computation · Kneading data · Isentropes

1 Preliminaries

1.1 m-Modal Maps

Let h: I → I be an m-modal map of the interval, i.e. there exist 0 < c1 ≤ c2 ≤ · · · ≤ cm < 1
folding points or critical points of h such that h is alternately increasing and decreasing on
the intervals H0, . . . ,Hm between the folding points.

I =
m⋃

k=0

Hk ∪
m⋃

j=1

{cj }.

We say that h is of shape s = (+,−,+, . . .) if h is increasing on H0 and of shape s =
(−,+,−, . . .) if h is decreasing on H0.

A. Radulescu (�)
Applied Mathematics, University of Colorado, Boulder, CO, USA
e-mail: radulesc@colorado.edu



374 A. Radulescu

If there is no smaller m with the properties above, then we call l(h) = m + 1 the lap
number of h. We say h is boundary anchored if the boundary of the unit interval is invariant
under h: h({0,1}) = {0,1}.

We consider a simple order on the alphabet A = {H0, . . . ,Hm} ∪ {c1, . . . , cm}, given by:
H0 < c1 < H1 < · · · < cm < Hm. We also define the signature signA of any A ∈ A to be +1,
if A is an interval on which h is increasing, −1 if A is an interval on which h is decreasing
and 0 if A is a critical point.

1.2 Itineraries. Partial Order

The itinerary �(x) = (A0(x),A1(x), . . .) of a point x ∈ I under h is a sequence of symbols
in A = {H0, . . . ,Hm} ∪ {c1, . . . , cm}, where

{
Ak(x) = Hj, if f ◦k(x) ∈ Hj,

Ak(x) = cj , if f ◦k(x) = cj .

Not all sequences of appropriate symbols are in general admissible for a fixed m-modal
map. There are rigorous criteria to test whether or not a such sequence is achieved as the
itinerary of some point under a given map (see [5, 11]).

On the space of all admissible m-modal itineraries we put a partial order as follows.
Given two distinct itineraries �1 = (A1,A2, . . .) and �2 = (B1,B2, . . .), there exists a small-
est index k ≥ 1 for which Ak 	= Bk , which we will call their discrepancy. We say by defini-
tion that �1 > �2 if

(
k−1∏

i=1

signAi

)
Ak >

(
k−1∏

i=1

signBi

)
Bk.

We say, as usual, that �1 ≥ �2 if either �1 > �2 or �1 = �2.

Remarks (1) This order is consistent with the order of points on the real line. If �(x) and
�(x ′) are the itineraries of two different points x and x ′ under the same m-modal map h,
then:

�(x) < �(x ′) ⇒ x < x ′,

x < x ′ ⇒ �(x) ≤ �(x ′).

(2) We will say that two itineraries �1 and �2 are comparable if either �1 ≥ �2 or
�1 ≤ �2. Two itineraries that belong to two different maps may not be comparable. This
happens if and only if they both contain a critical point ci in the position right before the
discrepancy, and if in addition the itineraries of ci under the corresponding two maps are
distinct.

1.3 Kneading Data. Partial Order

The kneading sequences of the map h are the itineraries of its folding values:

Kj = K(cj ) = �(f (cj )), 41 ≤ j ≤ m − 1.

The kneading-data K of h is the m-tuple of kneading-sequences:

K = (K1, . . . ,Km).
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Given two m-modal maps f and g, we say that K(f ) � K(g) if Kj (f ) ≤ Kj (g) when-
ever cj is a local maximum and Kj (f ) ≥ Kj (g) whenever cj is a local minimum. Clearly,
K(f ) and K(g) may fail to be comparable, even if the individual kneading sequences of f

are comparable to the corresponding ones of g. Therefore, “�” is only a partial order on the
kneading-data achievable by m-modal maps.

1.4 Topological Entropy

The topological entropy of a map measures in some sense the complexity of the corre-
sponding dynamical system, by counting how many “very different” orbits of arbitrarily
large length that the map can produce. It was introduced in the sixties as a quantity that is
invariant under continuous changes of coordinates (see [1]). It has better continuity prop-
erties than other measures of chaos (such as the Lyapunov exponents). Its uses, especially
to determine the degree of chaos in a system, are an incentive for developing sustainable
algorithms to compute it in general or for particular cases.

We will adopt here the original definition for the entropy of a continuous self-map of a
compact topological space.

Definition 1.1 Consider X a compact topological space, C an open cover of X and
f :X → X a continuous map. For each k ∈ N construct a new open cover:

Ck(f ) = {C0 ∩ f −1C1 ∩ · · · ∩ f −(k−1)Ck−1,Ci ∈ C}.
We define the topological entropy of the map f on X with the cover C as:

h(f,C) = lim
k→∞

1

k
logn(Ck(f )) ∈ [0,∞]

where n(Ck(f )) denotes the cardinality of the smallest subcover of Ck(f ). We define the
entropy of f as:

h(f ) = sup{h(f,C)/C open cover}.

As both measures of a map’s complexity, the topological entropy and the kneading-data
are related as follows:

Theorem (See [14]) The topological entropy for an m-modal map is determined by its
kneading-data. Moreover, if K(f ) � K(g), then h(f ) ≥ h(g).

Theorem (See [14]) Topological entropy depends continuously on kneading-data.

2 Is Entropy Computable?

Given an explicit dynamical system, is it possible in principle to compute the associated
topological entropy?

Unfortunately, the answer is in general: NO. It is known that certain cellular automaton
self-maps of Cantor sets have topological entropy that is not algorithmically computable [8].

Let’s suppress our ambition and rephrase the question. Is it even possible that the entropy
is computable within a given error margin ε? Are there any particular families of maps for
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which this happens? And if so, how costly is it in terms of time and other programming
resources?

It turns out that these are not a trivial questions to ask, either. For smooth 2-dimensional
maps and for smooth diffeomorphisms of dimension ≥ 3, the topological entropy does not
always depend continuously on parameters (see for example [12]), making computation
difficult. However, the situation is not that unfortunate for one-dimensional maps, where we
do possess strong continuity results which may help us in such ventures.

Theorem (See [2] or [17]) The topological entropy function is continuous:

h:C∞(I, I ) → [0,∞).

Corollary For any d , the topological entropy function is continuous on the finite dimen-
sional compact space consisting of all polynomial maps of the interval with degree ≤ d .

In addition, we have a few interesting alternative definitions for the topological entropy
of m-modal maps:

A. If f is a piecewise monotone map of the interval, then

h(f ) = lim
k→∞

1

k
log l(f ◦k) = inf

k>0

1

k
log l(f ◦k)

where l(f ◦k) is the lap number of f ◦k (see for example [13]).
B. If f strictly piecewise monotone, then

h(f ) = lim
k→∞

1

k
log(Adm(f, k))

where Adm(f, k) is the number of acritical admissible sequences of length k (see [14]).
C. If f has at most finitely many nonrepelling orbits, then

h(f ) = lim sup
k→∞

1

k
log+ Neg(f ◦k)

where Neg(F ) is the number of fixed points of F of negative type (see [15]).

To the best of the author’s knowledge, none of them turned out to be computationally op-
timal. There are, however, different approaches to the case of m-modal maps. Reference [4]
presents an approximation algorithm using Markov partitions that converges fairly rapidly
and provides upper and lower bounds. It applies to piecewise monotonic interval maps, but
can be adapted to other types. The method is flexible in treating multiple turning points.

Although the ideas presented here could be applied in a more general context, in this
paper we will fix our attention on a subfamily of polynomial maps on the unit interval,
more precisely the family of quartic polynomials that are compositions of two logistic maps:
qμ ◦ qλ where qλ: I → I given by qλ(x) = λx(1 − x), ∀λ ∈ [0,4].

Some theoretical results are already known in the parameter space P Q of this family. Al-
though we do not have any of the classical monotonicity properties known within the logistic
family (the entropy does not directly increase in P Q with either parameter λ or μ), we do
have a basic topological result [16]: The level-sets of the entropy, called isentropes, are con-
nected subsets of P Q. They seem to be either filled regions in P Q, or curves connecting two
boundary points, with strange shapes and visible singularities. At this stage, it is not clear
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which values of the entropy produce one-dimensional isentropes and which regions, and we
do not know where the singularities occur. While developing a sustainable algorithm that
estimates entropy in P Q, this paper will produce a picture with a mathematically rigorous
basis that displays all these phenomena in a trustable way.

The algorithm we present follows closely an idea used by [10] for maps with three
monotone pieces, and is based on the intimate relationship between the topological entropy
of a map and its kneading-data described in Sect. 1.

3 More on Kneading Data

Due to their symmetry, the maps qμ ◦ qλ have only two significant kneading sequences:
K1 = K3 and K2. This section contains a few remarks concerning the partial order on
itineraries and the partial order on kneading data of maps with such symmetry.

Definition 3.1 Consider two copies I1 and I2 of the unit interval and two unimodal maps
f1: I1 → I2 and f2: I2 → I1 with critical points γ1 ∈ I1 and γ2 ∈ I2, respectively. We call a
diorbit under the pair (f1, f2) a sequence:

x → f1(x) → f2(f1(x)) → f1(f2(f1(x))) . . . .

We say a diorbit is critical if it contains either critical point γ1 or γ2. A critical diorbit that
contains both γ1 and γ2 will be called bicritical.

We call the d’itinerary of a point x under (f1, f2) the infinite sequence �(x) = {Jk(x)}k≥0

of alternating symbols in {L1,�1,R1} and {L2,�2,R2} that expresses the positions (left,
critical or right) of the iterates of x in I1 and I2 with respect to γ1 or γ2 (see [16]).

We define a partial order on d’itineraries in a similar way as we did for regular itineraries.
The following lemma leads to a relationship between the critical d’itineraries under (f1, f2)

and the kneading-data of f2 ◦ f1.

Lemma 3.2 Consider f1 and f2 as above and call:

�(f1, f2)(γ2) = (�2, J1, J2, . . . , J2k, J2k+1, . . .)

the d’itinerary of γ2 under (f1, f2) and K1 = (A1,A2, . . . ,Ak, . . .) the sequence in A =
{H0, c1,H1, c2,H2, c3,H3} that represents the first kneading-sequence of f2 ◦ f1. Then, for
any k ≥ 1:

Ak = H0 iff (J2k−1, J2k) = (L1,L2),

Ak = H1 iff (J2k−1, J2k) = (L1,R2),

Ak = H2 iff (J2k−1, J2k) = (R1,R2),

Ak = H3 iff (J2k−1, J2k) = (R1,L2),

Ak = c1 iff (J2k−1, J2k) = (L1,�2),

Ak = c3 iff (J2k−1, J2k) = (R1,�2),

Ak = c2 iff J2k−1 = �1.

Proof The proof is an easy exercise. �
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Fig. 1 The behavior of the
quartic maps qμ ◦ qλ for various
values of the parameters λ and μ,
showed by comparison with the
behavior of the sawtooth family
Tb ◦ Ta for various values of a

and b

Lemma 3.3 If two distinct pairs of unimodal maps (f1, f2) and (f ′
1, f

′
2) have d’itineraries

of γ1 and γ2 such that �((f1, f2))(γ1) ≤ �((f ′
1, f

′
2))(γ1) and �((f1, f2))(γ2) ≤

�((f ′
1, f

′
2))(γ2), then their kneading data K(f2 ◦ f1) � K(f ′

2 ◦ f ′
1).

Proof The result follows easily from Lemma 3.2 and the definition of the order on
d’itineraries and on kneading-data. �

When then are the kneading-data of two maps f2 ◦ f1 and f ′
2 ◦ f ′

1 comparable? A first
concern is that one of the critical d’itineraries under (f1, f2) may not be comparable with the
corresponding d’itineraries under (f ′

1, f
′
2). This does not happen very often. �(f1, f2)(γ1)

is not comparable with �(f ′
1, f

′
2)(γ1) if and only if (1) they have �2 on the last common

position, and (2) the d’itineraries of γ2 are not equal to each other. According to Lemma 3.3,
comparable kneading-data for f2 ◦f1 and f ′

2 ◦f ′
1 means comparable d’itineraries that satisfy

one of the following conditions:

(1) �((f1, f2))(γ1) ≤ �((f ′
1, f

′
2))(γ1) and �((f1, f2))(γ2) ≤ �((f ′

1, f
′
2))(γ2), in which case

K(f2 ◦ f1) ≤ K(f ′
2 ◦ f ′

1) or
(2) �((f1, f2))(γ1) ≥ �((f ′

1, f
′
2))(γ1) and �((f1, f2))(γ2) ≥ �((f ′

1, f
′
2))(γ2), in which case

K(f2 ◦ f1) ≥ K(f ′
2 ◦ f ′

1).

These are the conditions we strive to obtain in search of maps with comparable kneading-
data.

4 Why P T , no More and no Less?

To help us calculate the entropy for maps with parameters in P Q, we use the model space
P T of pairs of tent maps (Fig. 1). This method of comparing a space of polynomials with a
simpler space of piecewise linear maps is not new. For topological entropy-related results in
P Q, we preferred the model space P ST of stunted sawtooth maps (see [14]), which preserves
homeomorphically the significant topological structures in P Q. For computational purposes,
however, using tent maps is not only sufficient, but also more helpful, as the following
sections will show.

Recall that for 0 ≤ a ≤ 2, we define the tent map Ta : I → I as: Ta(x) = a(1 − |x − 1|).
For a pair (a, b) ∈ [0,2]2, the composition Tb ◦ Ta will be either a 3-modal or a one-modal
sawtooth map with slope ±ab. What makes this model attractive is the trivial behavior of
this family with respect to the entropy function. It is known that the entropy of any sawtooth
map with slope ±s is equal to log s, if s ≥ 1 and equal to zero otherwise (see [2] for proof
and details). To simplify, we consider then the subset {(a, b) such that ab ≥ 1} ⊂ P ST and
we reparametrize it by s = loga, t = logb:

UT = {(s, t) ∈ [− log 2, log 2]2, s + t ≥ 0}
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Fig. 2 Left bones of order n = 4 in PT ,PST ,PQ (see [14]). The left bones of order n are defined as the
subsets of parameters for which the left critical point γ1 = 1

2 ∈ I1 returns to itself after 2n alternate iterations.
Compare with the isentropes pictures in the three parameter spaces in Sect. 7

UT encompasses all entropy values in [0, log 4], and does it in a very tidy way, as shown
below. As there is no danger of confusion, the maps in UT will also be denoted by Ts , but
with s ∈ [− log 2, log 2].

For a fixed value h∗ ∈ [0, log 4], we call the h∗-isentrope in UT the subset of parameters
where the entropy of the corresponding sawtooth function is h∗:

iT (h∗) = {(s, t) with h(Tt ◦ Ts) = h∗}.

Remark For any h∗ ∈ [0, log 4], the corresponding isentrope is a line segment of slope −1:

iT (h∗) = {(s, t) ∈ UT , s + t = h∗}
with the two boundary points: (sl, tl) = (h∗ − log 2, log 2) and (sr , tr ) = (log 2, h∗ − log 2).

UT represents all possible entropy values in [0, log 4]. We do not know if it also encom-
passes all possible kneading-data of symmetric (+,−,+,−) 3-modal maps. However, as
we will see, all we want is to find an element in UT with kneading-data comparable with
any K attained in P Q. There will be no homeomorphism between the combinatoric structure
in P Q and P T , unlike between P Q and P ST . Observe, for instance, the topological differ-
ences between the computer-generated pictures in Fig. 2, showing for each space some of
the algebraic curves of parameters where the critical point γ1 is periodic.

5 The Search for Kneading-Data

We say that a boundary-anchored m-modal map of the interval is critically preperiodic or
Markov if all critical points have finite orbits. We will prove in this section the following:

Theorem 5.1 Consider an isentrope iT (h∗) ⊂ UT which does not contain any Markov
maps. Then, for any arbitrary map in g in P Q, there exists a map f along iT (h∗) with
kneading-data comparable to K(g).

As shown in Sect. 4, for any fixed h∗ ∈ UT , the h∗-isentrope iT (h∗) ⊂ UT is the line
segment s + t = h with boundary points L = (sl, tl) = (h∗ − log 2, log 2) and R = (sr , tr ) =
(log 2, h∗ − log 2). For convenience, we introduce the following notations and conventions.
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Fig. 3 Portion of a bone that
illustrates the positions of U and
V where the combinatorics
change

We put an order on LR = iT (h∗) from L to R (i.e. X < Y if d(X,L) < d(Y,L). We
say as usual that X ≤ Y if d(X,L) ≤ d(Y,L)). The d’itineraries at points (s, t) ∈ iT (h∗) are
called (k1, k2). At a particular point X ∈ iT (h∗), the corresponding sawtooth map is fX and
the pair of critical d’itineraries is (k1(X), k2(X)).

The notation k1�m1 and K(f )�K(g) stands for “the two d’itineraries or kneading data
are comparable,” and k1�m1 and K(f )�K(g) for “not comparable.”

Lemma 5.2 Fix a map g ∈ P Q and an isentrope iT (h∗) ⊂ UT which does not contain
Markov maps. Call (m1,m2) the pair of d’itineraries of g. Suppose that there are two points
A,B ∈ iT (h∗) such that

either

{
k1(A) ≤ m1, k2(A) ≥ m2,

k1(B) ≥ m1, k2(B) ≤ m2

or

{
k1(A) ≥ m1, k2(A) ≤ m2,

k1(B) ≤ m1, k2(B) ≥ m2.

Then there exists a point C ∈ iT (h∗) between A and B such that:

either

{
k1(C) ≤ m1,

k2(C) ≤ m2

or

{
k1(C) ≥ m1,

k2(C) ≥ m2.

In other words, there exists a point C such that the corresponding map fC has kneading-data
comparable with K(g).

Proof As we know that there are no Markov maps on iT (h∗), it follows that there may be
points along AB where either k1�m1 or k2�m2, but not both simultaneously (Fig. 3).

Notice first that if at some point X we have k1(X)�m1, then either k2(X) < m2 or
k2(X) > m2, otherwise the map fX would be Markov. Similarly, k2(X)�m2 implies k1 < m1

or k1 > m1. So, if we find a point C with k1(C) = m1 or k2(C) = m2, we are done.
We can assume WLOG that k1(A) < m1, k2(A) > m2 and k1(B) > m1, k2(B) < m2.

Call U = sup{X ∈ AB with k1(X) < m1}. Then either k1(U) = m1 or k1(U)�m1 (because
both k1 < m1 and k1 > m1 are open conditions). Similarly, call V = sup{X ∈ AB with
k2(X) > m2}, so either k2(V ) = m2 or k2(V )�m2.

Clearly U 	= V , otherwise fU = fV would be Markov. Assume WLOG that U < V .
This implies k1(V ) > m1, otherwise k1(V ) = m1 or k1(V )�m1 and fV would be Markov. If
k2(V ) = m2, then we take C = V and we are done. If k2(V )�m2, then any small neighbour-
hood V � V contains at least one point C such that k2(C) > m2 (by the definition of sup)
and k1(C) > m1 (because the “>” condition is open) and we are again done. �

Proof of Theorem 5.1 Let us notice that the first d’itinerary k1 assumes the absolute maxi-
mum kmax

1 = (R2L1L2 . . .) at the left end-point L. The second itinerary k2(L) can’t be finite,
or else the map corresponding to L would be Markov. So we have either k2 ≤ m2 or k2 ≥ m2.
Similarly, the second d’itinerary assumes its maximum kmax

2 = (R1L2L1 . . .) at R, and also
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k1(R) ≤ m1 or k1(R) ≥ m1. If either (1) k1 ≥ m1 and k2 ≥ m2 or (2) k1 ≤ m1 or k2 ≤ m2, then
we are done. If not, then by Lemma 5.2 there is an appropriate point C ∈ iT (h∗) between A

and B , and we are also done. �

6 The Idea of the Algorithm

We fix a parameter (λ,μ) ∈ P Q and aim to estimate the entropy h(g) of the corresponding
map g = qμ ◦ qλ. We start by computing its pair of critical d’itineraries, which we will use
to perform an interesting algorithmic search.

Suppose we have an underestimate h0 and an overestimate h1 for h(g). To start the algo-
rithm, set the bounds as the a priori values h0 = 0 and h1 = log 4.1 (we chose 4.1 and not
4 for reasons that will become clear later). We want to improve our two estimates within
an error range of, say |h1 − h0| < ε = 10−4; when this error is reached, the algorithm stops
and returns h0(g) = h0 as the final underestimate and h1(g) = h1 as the overestimate. We
use an iterated bisecting technique. At each step, consider the average h∗ = 1

2 (h0 + h1). We
search along the isentrope iT (h∗) = {(s, t), h(Tt ◦ Ts) = h∗} for a map f = Tt ◦ Ts that has
kneading-data comparable with K(g). If K(f ) � K(g), then h∗ = h(f ) ≥ h(g) gives us a
better upper-estimate than h1, in which case we reassign this value to h1. If K(f ) � K(g),
then h = h(f ) ≤ h(g) is a better lower-estimate than h0, so we reassign this value to h0.
We continue to iterate until |h1 − h0| < 10−4, when we would have achieved the level of
approximation needed.

Theorem 5.1 assures us that there will always be such a map f = Tt ◦Ts with K(f ) com-
parable to K(g), provided none of the isentropes picked by the algorithm contains Markov
maps. So let’s see if our isentropes are indeed free of Markov maps.

Let f : I → I be a boundary anchored m-modal Markov map. If P = [x0, x1, . . . , xm] is
the ordered union of its finite critical orbits, then I\P is a finite union of open intervals,
whose closures Jk = (xk−1, xk) form a Markov partition of I . We define the Markov matrix
M = (Mij ) of f as follows: For each pair (i, j) ∈ {1, . . . , p}2, we set Mij = 1 if f (Ji)

covers Jj , and we set Mij = 0 if f (Ji) ∩ Jj = �.
We recall two known results related to Markov matrices that justify our algorithm. (For

a nice approach to computing the entropy using Markov partitions, see [4].)

Theorem The topological entropy of a Markov map is logλ where λ is the maximal eigen-
value of its Markov matrix (see for example [7]).

Theorem The associated Markov matrix M of an m-modal function f is invertible, so that
its largest eigenvalue λ is an algebraic unit.

Proof 1 As before, let x0 < · · · < xm be the points of P . Then we can write f (xk) = xσ(k)

where σ is a permutation of {0,1, . . . ,m}. If Jk is the interval [xk−1, xk] then the permutation
σ gives rise to an m × m Markov matrix M with entries Mij equal to one or zero, according
to whether f (Ji) does or does not cover Jj . We must prove that M is invertible.

Let A be the (m + 1) × (m + 1) permutation matrix with entries Aij equal to one if
σ(i) = j and zero otherwise. Then M can be constructed from A in three steps:

(1) In each row of A, replace every entry to the left of a one by a one.

1Proof communicated by Professor John Milnor, unpublished work, 12/01/2004.
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(2) For each k > 0, replace the row Rk of A by ±(Rk −Rk−1), choosing the sign so that the
entries are non-negative.

(3) Throw away the 0-th row and column of the resulting matrix. This will be the re-
quired M .

It is not hard to see that each of these matrix modifications preserves the determinant, up
to sign. Since A has determinant ±1, it follows that M has determinant ±1. �

Corollary 6.1 The topological entropy of a Markov map is the logarithm of an algebraic
unit.

With the corollary above, proving that our isentropes contain no Markov maps is now
an easy task. Indeed, it is not hard to see that all entropy levels h∗ chosen for the isen-
tropes are of the form h∗ = N

2n log 4.1, where N and n are positive integers. Suppose such an

h∗-isentrope contained a Markov map. Then, by the corollary, it would follow that (4.1)
N
2n

is an algebraic unit, contradiction.
Even knowing that along each such fixed h∗-isentrope there is a map f with kneading-

data K(f ) comparable to K(g), we still have to construct an effective algorithm that searches
for it. We start by checking the endpoints L = (sl, tl) = (h∗ − log 2, log 2) and R = (sr , tr ) =
(log 2, h∗ − log 2). If k2(L) ≥ m2, then K(fL) ≥ K(g) and we are done. Symmetrically, if
k1(R) ≥ m1, we have K(fR) ≥ K(g) and we are done. Given that the h∗-isentrope has no
Markov maps, the only other possible case is:

{
k1(L) ≥ m1,

k2(L) ≤ m2

and

{
k1(R) ≤ m1,

k2(R) ≥ m2.

By Theorem 5.1, we know that there is a map f along LR with kneading-data com-
parable to K(g). We consider the midpoint M = (sm, tm) = ( h

2 , h
2 ). If k1(M) ≥ m1 and

k2(M) ≥ m2, then we have K(M) ≥ K(g), so we have successfully found f = fM . If
k1(M) ≤ m1 and k2(M) ≤ m2, then we have found f = fM with K(M) ≤ K(g). If
k1(M) ≥ m1 and k2(M) ≤ m2, then we replace L = (sl, tl) = (sm, tm). If k1(M) ≤ m1 and
k2(M) ≥ m2, then we replace R = (sr , tr ) = (sm, tm). In both cases, Theorem 5.1 grants us
the existence of an f within the new interval LR with K(f ) comparable to K(g). We it-
erate the algorithm with the new end points L = (sl, tl) and R = (sr , tr ). We construct a
nested sequence of intervals around an f with the required properties. Note (from the proof
of Lemma 5.2) that in most cases any point in a small neighborhood of f satisfies, so it
is likely that in a fairly short computation time (i.e. small number of iterations) we find an
answer along the h∗-isentrope.

This plan could have one main problem: we do not know yet that all midpoints obtained
by this iterated bisection have critical d’itineraries comparable to m1 and m2, respectively.

Note first that all midpoints produced by the algorithm have coordinates of the form:

(s, t) =
(

p

2r+1
h + q

2r
log 2,

p′

2r ′+1
h + q ′

2r ′ log 2

)

where p,p′, q, q ′ are positive odd integers and r, r ′ are positive integers.
In other words, we are only picking pairs of tent maps with slopes of the form:

a = exp(s) = 2
q
2r H

p

2r+1 and b = exp(t) = 2
q′
2r′ H

p′
2r′+1
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where H = exp(h). We will show next that the critical d’itineraries for all such pairs (a, b)

cannot contain critical points.
Suppose the opposite: the algorithm produces a pair (a, b) with ab = exp(s) exp(t) =

exp(s + t) = H , such that the critical point 1
2 returns to itself after a finite number of

alternate iterates of Ta(x) = a(1 − |x − 1|) and Tb(x) = b(1 − |x − 1|). Without writ-
ing the terms explicitly, this condition translates as an equation having the general form:
aP (H) + HQ(H) = 1 (or bP ′(H) + HQ′(H) = 1, which could be analyzed similarly).
Here H = ab = exp(h) and P and Q are polynomials with coefficients only 1 and 2.

Substituting a = 2
q
2r H

p

2r+1 , we have:

2
q
2r H

p

2r+1 P (H) + HQ(H) = 1.

In other words:

22qHpP 2r+1
(H) = [1 − HQ(H)]2r+1

. (1)

As 41 is a prime number, we have the valuation function of v41: Q → N given by
v41(

a
b
) = m if a

b
= 41m c

d
such that c and d are not divisible by 41 (see [9]). We consider

the extension of this function to the totally ramified field extension Q41(4.1
1

2n ), which we
call V41 (see [3] for definitions and details).

To start with, we have that:

V41(4.1
1

2n ) = 1

so

V41(H) = NV41(4.1
1

2n ) = N.

It follows that V41(P (H)) is an integer B .
We valuate the left side of (1):

V41(2
2qHpP 2r+1

(H)) = V41(2
2q) + V41(H

p) + V41(P
2r+1

(H))

= 0 + pV41(H) + 2r+1V41(H) = pN + 2r+1B.

We valuate the right side of (1):

V41([1 − HQ(H)]2r+1
) = 2r+1V41(1 − HQ(H)) = 0.

In conclusion:

pN + 2r+1B = 0

which is a contradiction, as the left side is an odd integer.2

We have proved that neither one of the critical d’itineraries at (a, b) contains critical
points. It automatically follows that they are comparable to any d’itineraries, in particular to
m1 and m2, respectively.

Remark This proves that the points generated by our search algorithm never fall on bones
or capture components (see [16] for more on bones and combinatorics).

2I am indebted to Professor David Grant for useful conversations.
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Fig. 4 Some of the isentropes in PQ (left) and PST (right) generated by a C program following the algo-
rithm discussed in Sects. 5 and 6. To give some clarity to the pictures, the closer we are to the upper right
corner, the fewer of the actual isentropes are shown

7 The Final Picture and Some Comments

The picture of isentropes in P Q shown in Fig. 4 is obtained by calculating the entropy for a
grid of 480 × 480 parameter points in [0,4]2. For a complete version of the C program that
implements the algorithm described in the paper, see the following reference: www.amath.
colorado.edu/faculty/radulescu.

Some isentropes are easily identifiable. Clearly, the upper right corner, with coordinates
(λ,μ) = (4,4), is the isentrope corresponding to h∗ = log 4. The other isentropes are either
curves or filled regions. A little investigation shows that the region that contains the two
largest symmetric windows is the log 2-isentrope. Most curves that constitute arc-isentropes
or separate region-isentropes exhibit lots of singularities. An interesting result in this sense is
offered by [6], which discusses the combinatorial and smoothness properties of the boundary
of chaos (i.e., boundary of the 0-isentrope), for both parameter spaces of stunted sawtooth
maps and polynomials.

To end, I will point out the potential problems that one might expect when running the
program.

(1) The program does not generate infinite d’itineraries; it only works with truncations to
the first N iterates (for the picture above, we took N = 40). Therefore, the algorithm
may find two sequences to be equal when in fact they aren’t, except that the discrepancy
occurs after the N th position. This does not raise serious concerns: if we work with rea-
sonably long truncated d’itineraries we still get reasonable estimates. Besides, dealing
with infinity is intrinsically problematic for any computer program, and the theoretical
algorithm explicitly requires such concepts. So this problem can’t be helped.

(2) When creating the d’itineraries, the double or long precision may fail to detect if one
iterate hits the critical point or just gets very close to it. However, this does not seem to
happen for the set-up we chose.

(3) The search along an isentrope in P T could require too many bisections, that would cause
the program to stall for too long on that isentrope. This situation does not seem to occur
in practice, either.
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